Application of Ion Exchange in Wastewater Treatment

Bill Koebel 3/6/2019

Topics of Discussion

- Understanding "Metals" in Water
- How Ion Exchange Works- Short Version
- Resin Type Review
- What We Need to Know
- Basic Application Review
- Q & A

Metals in Waste Water

- Is what you want to remove cationic or anionic?
- Are the metals soluble or insoluble?
 - pH dependent (hydroxide solubility)
 - Other chemistry can complex
 - Filtered vs Unfiltered Results
- Analysis data doesn't always tell the whole story.

Yes, the Periodic Table

Metal Hydroxide Solubility

Common Anionic Contaminants

- Arsenic
- Antimony
- Chromate (Hex)
- Uranium
- Cyanide
- Perchlorate
- Nitrate

Ion Exchange Today

- Tiny plastic beads that have been chemically activated
- They are manufactured products that are made from petrochemical based monomers

Ion Exchange Today

Material Properties

- Size between 16 to 50 U.S. Mesh
- Resistance to fracture
- Insoluble
- Permanently attached sites
- High capacity for ions
- Temperature effects negligible

What is Ion Exchange?

- Exchange of undesirable ions for desirable ones
- Selectivity drives the reaction
- The process is reversible via regeneration

Inside the Resin Bead

Inside the Resin Bead

Inside the Resin Bead

The Resin Bead in Action

Water contacts resin beads. Beads are 50% water.

The Resin Bead in Action

Water containing unwanted ion, in contact with water inside beads, allows ions to diffuse in/out of beads.

The Resin Bead in Action

Hydrogen ions are exchanged and exit producing improved water.

Definition of lons

- Cations Positively charged ions dissolved in solution
- Anions Negatively charged ions dissolved in solution
- Law of Electroneutrality In any solution the number of cations equals the number of anions

Selectivity

- The attraction, of one ion over another, to an ion exchange resin
- Function of ion charge, size and concentration
- For SACs and SBAs:
 - Bigger the ion, higher the charge, the more selective the ion becomes
 - l.e. -3>-2>-1 and +3>+2>+1

Basic Products

- Cation Resins (CGS)
- Anion Resins (SBG1P)
- Mixed Bed Resins
- Selective Resins & Zeolites (SIR-300)

Cation Resins

- Used to remove cations from water
 - Hardness, Heavy Metals or all cations
- Strong Acid Cation (CGS)
 - Typically use Na+ or H+ forms
- Weak Acid Cation
 - Typically use Na+ or H+ forms

Common Cations

Iron	Fe ²⁺
Calcium	Ca ²⁺
Magnesium	Mg ²⁺
Sodium	Na ⁺
Potassium	K +
Hydrogen	H +

Anion Resins

- Used to remove anions from water
 - Complexes, oxy anions (Cromate, Sulfate, etc.)
- Strong Base Anion (SBG1P)
 - Typically use CI- or OH- forms
- Weak Base Anion
 - Typically use Cl- or free base forms

Common Anions

Phosphate	PO ₄ -3
Sulfate	SO ₄ -2
Nitrate	NO ₃ -
Chloride	Cl -
Bicarbonate	HCO ₃ -
Hydroxide	OH-

Selective Resins & Media

- Used to remove various ions from water
 - Heavy metals most common
- Chelating Resins
 - Typically use Na+ or H+ forms
 - Many types
- Ignores hardness and TDS
 - "pluck" metals out of water

Chelating Lobster (SIR-300)

Resin Selection

- Feedwater analysis
- Desired effluent quality
- Operating conditions
- Economics
- Type of equipment
- Regeneration chemicals if available

What do we need to Know?

- Viability of ion exchange
 - TDS (or conductivity)
 - pH
 - Basic inorganic analysis of ions (Ca, Mg, Na, Cl, SO4)
 - Presence or absence of oxidants (air?)
 - presence or absence of complexing agents
 - TOC
 - Suspended Solids (TSS)

TDS Limits of various Resins Used for Metals Removal

- Strong Cation Resin (Hydrogen form)
- Strong Cation Resin (Sodium form)
- Weak Cation Resin (Sodium form)
- Chelating Cation Resin (Sodium form)

- 500 ppm
- 2,000 ppm
- 15,000 ppm
 - no limit

Application Information

- CGS & SBG1P will be you main products
 - Apply at 2-5 GPM/Cuft
 - Need at least 20 bed volumes (150 gal/Cuft) before sampling (mainly due to VOC throw)
- SIR-300 (less often used, brackish waters)
 - Apply at 1-2 GPM/Cuft
 - pH issues need to be addressed
- TSS must be controlled (<0.5 ppm ideal)

Bulk Waste Treatment Schematic

The Capacity Question...

- More information the better
- Estimations are as good as the data provided
- Always given in good faith, most times it's a best guess
- Cover yourself!!

THANK YOU

Bill Koebel

Eastern Regional Sales Mgr

- p. 412-716-7921
- e. wkoebel@resintech.com

